Domain shift widely exists in the visual world, while modern deep neural networks commonly suffer from severe performance degradation under domain shift due to the poor generalization ability, which limits the real-world applications. The domain shift mainly lies in the limited source environmental variations and the large distribution gap between source and unseen target data. To this end, we propose a unified framework, Style-HAllucinated Dual consistEncy learning (SHADE), to handle such domain shift in various visual tasks. Specifically, SHADE is constructed based on two consistency constraints, Style Consistency (SC) and Retrospection Consistency (RC). SC enriches the source situations and encourages the model to learn consistent representation across style-diversified samples. RC leverages general visual knowledge to prevent the model from overfitting to source data and thus largely keeps the representation consistent between the source and general visual models. Furthermore, we present a novel style hallucination module (SHM) to generate style-diversified samples that are essential to consistency learning. SHM selects basis styles from the source distribution, enabling the model to dynamically generate diverse and realistic samples during training. Extensive experiments demonstrate that our versatile SHADE can significantly enhance the generalization in various visual recognition tasks, including image classification, semantic segmentation and object detection, with different models, i.e., ConvNets and Transformer.
translated by 谷歌翻译
Inserting an SVD meta-layer into neural networks is prone to make the covariance ill-conditioned, which could harm the model in the training stability and generalization abilities. In this paper, we systematically study how to improve the covariance conditioning by enforcing orthogonality to the Pre-SVD layer. Existing orthogonal treatments on the weights are first investigated. However, these techniques can improve the conditioning but would hurt the performance. To avoid such a side effect, we propose the Nearest Orthogonal Gradient (NOG) and Optimal Learning Rate (OLR). The effectiveness of our methods is validated in two applications: decorrelated Batch Normalization (BN) and Global Covariance Pooling (GCP). Extensive experiments on visual recognition demonstrate that our methods can simultaneously improve covariance conditioning and generalization. The combinations with orthogonal weight can further boost the performance. Moreover, we show that our orthogonality techniques can benefit generative models for better latent disentanglement through a series of experiments on various benchmarks. Code is available at: \href{https://github.com/KingJamesSong/OrthoImproveCond}{https://github.com/KingJamesSong/OrthoImproveCond}.
translated by 谷歌翻译
Crowd localization aims to predict the spatial position of humans in a crowd scenario. We observe that the performance of existing methods is challenged from two aspects: (i) ranking inconsistency between test and training phases; and (ii) fixed anchor resolution may underfit or overfit crowd densities of local regions. To address these problems, we design a supervision target reassignment strategy for training to reduce ranking inconsistency and propose an anchor pyramid scheme to adaptively determine the anchor density in each image region. Extensive experimental results on three widely adopted datasets (ShanghaiTech A\&B, JHU-CROWD++, UCF-QNRF) demonstrate the favorable performance against several state-of-the-art methods.
translated by 谷歌翻译
分发(OOD)检测的任务对于在现实世界中部署机器学习模型至关重要。在本文中,我们观察到分布(ID)和OOD特征的奇异值分布截然不同:OOD特征矩阵倾向于具有比ID特征更大的优势奇异值,并且OOD样本的类预测在很大程度上取决于它。该观察结果促使我们提出\ texttt {rankfeat},这是一种简单而有效的\ texttt {post hoc}方法,通过删除由最大的单数值和相关的单数矢量组成的rank-1矩阵,从(\ emph { \ texttt {rankfeat}达到\ emph {最新的}性能,并将平均误报率(FPR95)降低了17.90 \%,与以前的最佳方法相比。提供了广泛的消融研究和全面的理论分析,以支持经验结果。
translated by 谷歌翻译
我们建议使用单个图像进行面部表达到表达翻译的简单而强大的地标引导的生成对抗网络(Landmarkgan),这在计算机视觉中是一项重要且具有挑战性的任务,因为表达到表达的翻译是非 - 线性和非对准问题。此外,由于图像中的对象可以具有任意的姿势,大小,位置,背景和自我观念,因此需要在输入图像和输出图像之间有一个高级的语义理解。为了解决这个问题,我们建议明确利用面部地标信息。由于这是一个具有挑战性的问题,我们将其分为两个子任务,(i)类别引导的地标生成,以及(ii)具有里程碑意义的指导表达式对表达的翻译。两项子任务以端到端的方式进行了培训,旨在享受产生的地标和表情的相互改善的好处。与当前的按键指导的方法相比,提议的Landmarkgan只需要单个面部图像即可产生各种表达式。四个公共数据集的广泛实验结果表明,与仅使用单个图像的最先进方法相比,所提出的Landmarkgan获得了更好的结果。该代码可从https://github.com/ha0tang/landmarkgan获得。
translated by 谷歌翻译
基于生成神经辐射场(GNERF)基于生成神经辐射场(GNERF)的3D感知gan已达到令人印象深刻的高质量图像产生,同时保持了强3D一致性。最显着的成就是在面部生成领域中取得的。但是,这些模型中的大多数都集中在提高视图一致性上,但忽略了分离的方面,因此这些模型无法提供高质量的语义/属性控制对生成。为此,我们引入了一个有条件的GNERF模型,该模型使用特定属性标签作为输入,以提高3D感知生成模型的控制能力和解散能力。我们利用预先训练的3D感知模型作为基础,并集成了双分支属性编辑模块(DAEM),该模块(DAEM)利用属性标签来提供对生成的控制。此外,我们提出了一个Triot(作为INIT的训练,并针对调整进行优化),以优化潜在矢量以进一步提高属性编辑的精度。广泛使用的FFHQ上的广泛实验表明,我们的模型在保留非目标区域的同时产生具有更好视图一致性的高质量编辑。该代码可在https://github.com/zhangqianhui/tt-gnerf上找到。
translated by 谷歌翻译
无源域的适应性(SFDA)旨在通过仅使用预训练的源模型将分类器调整为未标记的目标数据集。但是,缺乏源数据和域移动使目标数据对目标数据的预测不可靠。我们建议量化源模型预测中的不确定性,并利用它来指导目标适应。为此,我们通过在网络参数上合并先验,构建一个概率源模型,从而在模型预测上诱导分布。通过采用拉普拉斯近似值来估算不确定性,并合并以识别不在源歧管中的目标数据点并在最大化目标数据上的共同信息时减少重量。与最近的作品不同,我们的概率处理是计算轻量级,脱离源训练和目标适应,并且不需要专门的源培训或模型体系结构的更改。我们显示了不确定性引导的SFDA比封闭设置和开放式设置中的传统SFDA的优势,并提供了经验证据,即即使没有调整,我们的方法对于强大的域转移也更为强大。
translated by 谷歌翻译
在过去的几年中,无监督的域适应性(UDA)技术在计算机视觉中具有显着的重要性和流行。但是,与可用于图像的广泛文献相比,视频领域仍然相对尚未探索。另一方面,动作识别模型的性能受到域转移的严重影响。在本文中,我们提出了一种简单新颖的UDA方法,以供视频动作识别。我们的方法利用了时空变压器的最新进展来构建一个强大的源模型,从而更好地概括了目标域。此外,由于引入了来自信息瓶颈原则的新颖对齐损失术语,我们的架构将学习域不变功能。我们报告了UDA的两个视频动作识别基准的结果,显示了HMDB $ \ leftrightArrow $ ucf的最新性能,以及动力学$ \ rightarrow $ nec-Drone,这更具挑战性。这证明了我们方法在处理不同级别的域转移方面的有效性。源代码可在https://github.com/vturrisi/udavt上获得。
translated by 谷歌翻译
3D激光雷达语义细分对于自动驾驶是基础。最近已经提出了几种用于点云数据的无监督域适应性(UDA)方法,以改善不同传感器和环境的模型概括。研究图像域中研究UDA问题的研究人员表明,样品混合可以减轻域的转移。我们提出了一种针对点云UDA的样品混合的新方法,即组成语义混合(Cosmix),这是基于样品混合的第一种UDA方法。 Cosmix由一个两分支对称网络组成,该网络可以同时处理标记的合成数据(源)和现实世界中未标记的点云(目标)。每个分支通过从另一个域中混合选定的数据来在一个域上运行,并使用源标签和目标伪标签的语义信息。我们在两个大规模数据集上评估Cosmix,表明它的表现要优于最先进的方法。我们的代码可在https://github.com/saltoricristiano/cosmix-uda上找到。
translated by 谷歌翻译
3D点云语义细分对于自动驾驶至关重要。文献中的大多数方法都忽略了一个重要方面,即在处理动态场景时如何处理域转移。这可能会极大地阻碍自动驾驶车辆的导航能力。本文推进了该研究领域的最新技术。我们的第一个贡献包括分析点云细分中的新的未开发的方案,即无源的在线无监督域改编(SF-OUDA)。我们在实验上表明,最新的方法具有相当有限的能力,可以使预训练的深网模型以在线方式看不到域。我们的第二个贡献是一种依赖于自适应自我训练和几何传播的方法,以在线调整预训练的源模型,而无需源数据或目标标签。我们的第三个贡献是在一个充满挑战的设置中研究sf-ouda,其中源数据是合成的,目标数据是现实世界中捕获的点云。我们将最近的Synlidar数据集用作合成源,并引入了两个新的合成(源)数据集,这些数据集可以刺激未来的综合自动驾驶研究。我们的实验显示了我们分割方法对数千个现实点云的有效性。代码和合成数据集可在https://github.com/saltoricristiano/gipso-sfouda上找到。
translated by 谷歌翻译